A Brief History of Transformers (Not the Robot Kind)

I have always disliked exaggerated claims of imminent scientific and technical breakthroughs, such as inexpensive fusion, cheap supersonic travel, and the terraforming of other planets. But I am fond of the simple devices that do so much of the fundamental work of modern civilization, particularly those that do so modestly—or even invisibly.

No device fits this description better than a transformer. Non-engineers may be vaguely aware that such devices exist, but they have no idea how they work and how utterly indispensable they are for everyday life. (A transformer is a device that transfers electricity between two circuits while changing voltage, that is the “pressure” of the electric current’s power.)

The theoretical foundation was laid in the early 1830s, with the independent discovery of electromagnetic induction by Michael Faraday and Joseph Henry. They showed that a changing magnetic field can induce a current of a higher voltage (known as “stepping up”) or a lower one (“stepping down”). But it took another half-century before Lucien Gaulard, John Dixon Gibbs, Charles Brush, and Sebastian Ziani de Ferranti could design the first useful transformer prototypes. Next, a trio of Hungarian engineers—Ottó Bláthy, Miksa Déri, and Károly Zipernowsky—improved the design by building a toroidal (doughnut-shaped) transformer, which they exhibited in 1885.

The very next year, a better design was introduced by a trio of American engineers—William Stanley, Albert Schmid, and Oliver B. Shallenberger, who were working for George Westinghouse. The device soon assumed the form of the classic Stanley transformer that has been retained ever since: a central iron core made of thin silicon steel laminations, one part shaped like an “E” and the other shaped like an “I” to make it easy to slide wound copper coils into place.

website link
websites
what do you think
what google did to me
what is it worth
why not check here
why not find out more
why not look here
why not try here
why not try these out
why not try this out
you can check here
you can find out more
you can look here
you can try here
you can try these out
you can try this out
you could check here
you could look here
you could try here
you could try these out
you could try this out
your domain name
your input here
have a peek at this web-site
Source
have a peek here
Check This Out
this contact form
navigate here
his comment is here
weblink
check over here
this content
have a peek at these guys
check my blog
news
More about the author
click site
navigate to this website
my review here
get redirected here
useful reference
this page
Get More Info
see here
this website
great post to read
my company
imp source
click to read more
find more info
see it here
Homepage
a fantastic read
find this
Bonuses
read this article
click here now
browse this site
check here
original site
my response
pop over to these guys
my site
dig this
i thought about this
check this link right here now
his explanation
why not try these out
more info here
official site
look at this site
check it out
visit
click for more info
check these guys out
view publisher site
Get More Information
you can try this out

 

In his address to the American Institute of Electrical Engineers in 1912, Stanley rightly marveled at how the device provided “such a complete and simple solution for a difficult problem. It so puts to shame all mechanical attempts at regulation. It handles with such ease, certainty, and economy vast loads of energy that are instantly given to or taken from it. It is so reliable, strong, and certain. In this mingled steel and copper, extraordinary forces are so nicely balanced as to be almost unsuspected.”

The biggest modern incarnations of this enduring design have made it possible to deliver electricity across great distances. In 2018, Siemens delivered the first of seven record-breaking 1,100-kilovolt transformers that will enable electricity supply to several Chinese provinces linked to a nearly 3,300-kilometer-long, high-voltage DC line.

The sheer number of transformers has risen above anything Stanley could have imagined, thanks to the explosion of portable electronic devices that have to be charged. In 2016 the global output of smartphones alone was in excess of 1.8 billion units, each one supported by a charger housing a tiny transformer. You don’t have to take your phone charger apart to see the heart of that small device; a complete iPhone charger teardown is posted on the internet, with the transformer as one of its largest components.

But many chargers contain even tinier transformers. These are non-Stanley (that is, not wire-wound) devices that take advantage of the piezoelectric effect—the ability of a strained crystal to produce a current, and of a current to strain or deform a crystal. Sound waves impinging on such a crystal can produce a current, and a current flowing through such a crystal can produce sound. One current can in this way be used to create another current of a very different voltage.

And the latest innovation is electronic transformers. They are much reduced in volume and mass compared with traditional units, and they will become particularly important for integrating intermittent sources of electricity—wind and solar—into the grid and for enabling DC microgrids. Without transformers we would not have the age of ubiquitous electricity, and be stuck in the era of oil lamps and telegraph.


From Numbers Don’t Lie by Vaclav Smil, published by Penguin Books, an imprint of Penguin Publishing Group, a division of Penguin Random House, LLC. Copyright © 2020 by Vaclav Smil.


More Great WIRED Stories


If you buy something using links in our stories, we may earn a commission. This helps support our journalism. Learn more.

Leave a Reply

Your email address will not be published. Required fields are marked *

Previous post What If Gravity Is Actually a Double Copy of Other Forces?
Next post The GPU Shortage Deepened My Existential Dread