How the Venus Flytrap ‘Remembers’ When It Captures Prey

Scientists are continuing to tease out the mechanisms by which the Venus flytrap can tell when it has captured a tasty insect as prey as opposed to an inedible object (or just a false alarm). There is evidence that the carnivorous plant has something akin to a short-term “memory,” and a team of Japanese scientists has found evidence that the mechanism for this memory lies in changes in calcium concentrations in its leaves, according to a recent paper published in the journal Nature Plants.

The Venus flytrap attracts its prey with a pleasing fruity scent. When an insect lands on a leaf, it stimulates the highly sensitive trigger hairs that line the leaf. When the pressure becomes strong enough to bend those hairs, the plant will snap its leaves shut and trap the insect inside. Long cilia grab and hold the insect in place, much like fingers, as the plant begins to secrete digestive juices. The insect is digested slowly over five to 12 days, after which the trap reopens, releasing the dried-out husk of the insect into the wind.

Back in 2016, a team of German scientists discovered that the Venus flytrap can actually “count” the number of times something touches its hair-lined leaves—an ability that helps the plant distinguish between the presence of prey and a small nut or stone, or even a dead insect. The scientists zapped the leaves of test plants with mechano-electric pulses of different intensities and measured the responses. It turns out that the plant detects that first “action potential” but doesn’t snap shut right away, waiting until a second zap confirms the presence of actual prey, at which point the trap closes.

But the Venus flytrap doesn’t close all the way and produce digestive enzymes to consume the prey until the hairs are triggered three more times (for a total of five stimuli). The German scientists likened this behavior to performing a rudimentary cost-to-benefit analysis, in which the number of triggering stimuli help the Venus flytrap determine the size and nutritional content of any potential prey struggling in its maw and whether it’s worth the effort. If not, the trap will release whatever has been caught within 12 hours or so. (Another means by which the Venus flytrap tells the difference between an inedible object and actual prey is a special chitin receptor. Most insects have a chitin exoskeleton, so the plant will produce even more digestive enzymes in response to the presence of chitin.)

discover this
from this source
basics
read what he said
visit the site
browse around this web-site
visit this site
link
click for source
click this link now
blog
why not look here
more information
look at these guys
site link
helpful hints
pop over to this web-site
go to my site
see this page
browse around this website
view website
my sources
webpage
Discover More Here
Learn More Here
company website
click for info
Read Full Article
his response
click over here
take a look at the site here
more tips here
helpful resources
check out this site
look at this website
have a peek at this site
the original source
Continue
visit our website
visit this website
go to this website
pop over here
Home Page
Recommended Reading
these details
advice
try these out
check my reference
her comment is here
useful link
Resources
hop over to here
click this link here now
blog link
Continue eading
Click Here
Clicking Here
Go Here
Going Here
Read This
Read More
Find Out More
Discover More
Learn More
Read More Here
Discover More Here
Learn More Here
Click This Link
Visit This Link
Homepage
Home Page
Visit Website
Website
Web Site
Get More Info
Get More Information
This Site
More Info
Check This Out
Look At This

The implication is that the Venus flytrap must have some sort of short-term memory mechanism in order for that to work, since it has to “remember” the first stimulation long enough for the second stimulation to register. Past research has posited that shifts in the concentrations of calcium ions play a role, although the lack of any means to measure those concentrations, without damaging the leaf cells, prevented scientists from testing that theory.

That’s where this latest study comes in. The Japanese team figured out how to introduce a gene for a calcium sensor protein called GCaMP6, which glows green whenever it binds to calcium. That green fluorescence allowed the team to visually track the changes in calcium concentrations in response to stimulating the plant’s sensitive hairs with a needle.

“I tried so many experiments over two and a half years, but all failed,” said coauthor Hiraku Suda, a graduate student at the National Institute for Basic Biology (NIBB) in Okazaki, Japan. “The Venus flytrap was such an attractive system that I did not give up. I finally noticed that foreign DNA integrated with high efficiency into the Venus flytrap grown in the dark. It was a small but indispensable clue.”

The results supported the hypothesis that the first stimulus triggers the release of calcium, but the concentration doesn’t reach the critical threshold that signals the trap to close without a second influx of calcium from a second stimulus. That second stimulus has to occur within 30 seconds, however, since the calcium concentrations decrease over time. If it takes longer than 30 seconds between the first and second stimuli, the trap won’t close. So the waxing and waning of calcium concentrations in the leaf cells really do seem to serve as a kind of short-term memory for the Venus flytrap.

Leave a Reply

Your email address will not be published. Required fields are marked *

Previous post What to Wear When Battling the Venomous Asian Giant Hornet
Next post Babies May Be Drinking Millions of Microplastic Particles a Day